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ABSTRACT

	 There are different ways in which human beings cognitively handle sources of infor-
mation. Tasks, such as number guessing, velocity, weight, and extension estimation, can be 
accomplished through different cognitive strategies – e.g. by counting, or comparing objects’ 
characteristics, and so on. In most cases, these different ways imply different performances 
and costs to the subject. We offer an interpretation of these “different ways” in terms of differ-
ent channel codes through which the environmental information is processed by the Central 
Nervous System (CNS). By considering the channel code’s cost and performance, we will dis-
tinguish among three categories of codes; prompt processing, working memory, and symbolic 
coding scheme. The interpretation seems to provide explanations to important questions, such 
as: Why do we have the internal representation that we have – in terms of colors, extension, 
and texture? Why are simple theories considered better than complex ones? Why do different 
representations of a given system, even if conflicting, result in the same action plans (experi-
ments)?

KEYWORDS: Brain processing limits; Information theory; Number guessing experiment; Sym-
bolic language. 

INTRODUCTION

	 In general, there seem to be different ways in which human beings cognitively handle 
sources of information. Tasks, such as number guessing, velocity, weight, and extension esti-
mation, can be accomplished through different cognitive strategies – e.g. by counting, or com-
paring objects’ characteristics, and so on. In most cases, these different ways imply different 
performances and costs to the subject. In this paper, I offer an interpretation of these “different 
ways” in terms of different channel codes through which the environmental information is 
processed by the Central Nervous System (CNS). By considering the channel code’s cost and 
performance, I will distinguish among three categories of codes; prompt processing, working 
memory, and symbolic coding scheme. The code metaphor affords alluring explanations to 
important questions, such as: Why do we have the internal representation that we have – in 
terms of colors, extension, and texture? Why are simple theories considered better than com-
plex ones? Why do different representations of a given system, even if conflicting, result in the 
same action plans (experiments)? In most cases, examples will be given through the number 
guessing experiments, though the general principles seem to be applicable to cognitive tasks 
broadly.

	 From the philosophical point of view, the problem of giving a suitable characteriza-
tion of the role played by symbolic language in our relation with the environment has mostly 
taken a representationalist format. Philosophers have broadly tried to justify the successful 
employment of mathematical language in science through notions as ‘reference’, ‘correspon-
dence’, ‘truth’; all of which seem to suppose a representing relation between symbolic lan-
guage, on the one hand, and the world (or a model of it) endowed of predefined properties, on 
the other hand. The problem is that this representationalist account seems to provide no sat-
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isfactory explanation of the connection between the organism’s 
representations and its interactions with environment, which is 
the main organism’s purpose.1-6 From the psychological point of 
view, the idea of interpreting the symbolic language as a code is 
not entirely new. Dehaene in 1992, for example, has proposed a 
model in which different numerical representations are viewed 
as different processing codes for numerical magnitudes.7 How-
ever, the Dehaene’s triple-code model provides no clear indica-
tion of which mathematical tools should we employ to make this 
notion of code more precise. Therefore, the twofold aim of this 
paper is, first, to provide a characterization of the role played by 
symbolic language in our relation with the environment that can 
be connected with motor interaction. And, second, to suggest a 
mathematical formalist in which the code’s intuition can be suit-
able formulated and explored, conducting to more refined mod-
els. As a surplus, answers to old philosophical questions seem to 
emerge.

THEORETICAL FRAMEWORK

	 The information processing carried out by the Central 
Nervous System (CNS) is interpreted as the communication sys-
tem whose performance is measured in terms of control. There-
fore, environmental information is processed by the sensorial 
organs resulting in action plans whose objectives are to keep 
the organism alive. Whenever an accident occurs I will assume 
some bit of information had been wrongly decoded – the average 
over the suffered accidents gives the degree of control – or the 
lack of control. According to this interpretation, an information 
processing system is specified by six entities, grouped into three 
pairs: The source (p(s), d), consisting of a probability distribu-
tion p(s) and a distortion function d; the channel (p(y│x), ρ), 
consisting of a conditional probability distribution p(y│x)  and a 
cost function ρ; and the code (F,G),, consisting of the encoder F  
and the decoder G functions (Figure 1). For the purpose of this 
paper, I will be concerned with discrete and finite alphabets. 

Definition 1.1 (Source): A discrete-time memory less source 
(p(s), d) is specified by a probability distribution p(s) on an 
alphabet S and a set of Hamming-like distortion functions. 
Let’s take the power set P(S), so that P(S)={S̿1,…,S̿i,…,S̿2|S|}. 
Now let us define a set of Hamming-like distortion functions    

U= {d1 (S, Ŝ ),…,di (S, Ŝ ),…,d2|S|(S, Ŝ )} so that
	
                                                                                               1.1.
 

is called the Accident Distortion Measure, which results in a 
probability of error, since Edi(S,Ŝ)=Pri(S≠Ŝ). This implicitly 
specifies an alphabet Ŝ in which the source is reconstructed. As 
the alphabets are discrete, we call this, a discrete memoryless 
source, and the probability distribution becomes a probability 
mass function (pmf ). 

	 Intuitively, the source p(s) should be interpreted as 
one’s environment and the 2S distortion functions as the relevant 
information to successful interactions in all different situations. 

Definition 1.2 (Learning Function): To choose among the 2|S| dis-
tortion functions di(S,Ŝ), a set of sequences { }1 2, ,....,n n

nA s s s s∈ = ∈  
is generated according to the distribution of probability p(s), the 
so-called typical set of  S. Then we define an index function L 
so that
                                                                                                                                       
: nL A U∈ →

                                                                                                                                                                                                                                                                                                   
is called Learning Function. The learning process is a question 
of finding out the Learning Function L. The sequences in nA∈ can 
be interpreted as the typical situations occurring in our world.

	 Intuitively, each sequence si

nA∈Sn should be interpreted as 
a typical environmental situation – i.e. the rocks falling down, 
hot air coming up, birds flying, fishes swimming and not other-
wise – and the Learning Function as the skill of paying attention 
to the right things in every situation.

Definition 1.3 (Channel): A discrete-time memoryless channel  
(p(y│x),ρ) is specified by a conditional probability distribution, 
p(y│x), defined on two discrete alphabets X and Y and a non-
negative function 

                          ρ:X→R+                                                                            1.3.

called the channel input cost function. When the alphabets are 
discrete, we call this a discrete memoryless channel.
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Figure 1: Information system.

1.2.
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	 Intuitively, the notion of channel should be interpreted 
as the relation between perception and action and the cost func-
tion as a measure of the processing costs. 

Definition 1.4 (Source-Channel Code): A source-channel code  
(F, G) of rate R is specified by an encoding function
                                       
 		  F:S→Xn,                                                           1.4.   

yielding code words xn(1),xn(2),…,xn(2nR), the set of code words 
is called the codebook or coding scheme.

And a decoding function
                                  
	                 G:Yn→Ŝ,                                                            1.5.           

such that k/n = R, where n is for n uses of channel and k is for 
number of bits per source symbol.

	 Intuitively, S is the source information that affects the 
organism through stimuli generating an internal representation 
Xn. The internal representation is processed generating an action 
plan Yn, which is decoded as real actions Ŝ.                                                                                               

	 For a fixed source (p(s),d), a fixed channel (p(y│x),ρ), 
and a fixed code (F, G), we can then easily determine the average 
incurred distortion,

    Di
def  Edi(S

k,Ŝk)                                                                  1.6.

and the average required cost,

    Γ def Eρ(Xm)                                                                        1.7.
	
	 The information source S is merged in a codebook 
(n,2nR)  through the encode function F and transmitted through 
the channel p(y│x) at a cost Γ. The channel output is decoded 
through the function G resulting in source estimation (or repre-
sentation) Ŝ, resulting in a distortion D. The maximum quantity 
of information transmitted through the channel, given the cost 
constraint Γ, is defined in terms of Mutual Information as follow-
ing:

Definition 1.5 (Capacity-Cost Function): The capacity-cost func-
tion of the channel (p(y│x),ρ) is defined as

C(Γ)=maxp(x):Eρ(x)≤Γ I(X;Y)                                                      1.8.

	 The cost measure limits the quantity of information 
that the channel can transmit reliably. According to the Source-
Channel Separation Theorem, if H(S)≤C(Γ), then there exist a 
source-channel code so that the probability of error goes asymp-
totically to zero. Otherwise, if H(S)>C(Γ), then the probability 
of error is bounded above zero – which means that the D>0.8,9 
In other words, if the source entropy is greater than the channel-
cost capacity, then no compression can be carried out lossless. 

	 Intuitively, it means that when given interaction de-
mands more information from the environment than the CNS 
is able to process, the probability of an accident to occur is 
increased. The function which gives the compression rate, for 
fixed distortion value D, is the Rate-distortion function.

Definition 1.6 (Rate-Distortion Function): The rate-distortion 
function of the source (p(s),d) is defined as
   

i i p(S|S):Ed (S,S) DR(D)=min I(S|S)≤
 


                                               1.9.        

	 On the other hand, the function which gives the distor-
tion value, for a fixed rate R, is the Distortion-rate function.           
                                                    
Definition 1.7 (Distortion-Rate Function): The distortion-rate 
function of the source (p(s),d) is defined as
                                                            

ip(S|S):I(S,S) RD(R)=min Ed (S|S)≤
 



                                       1.10.        

	 We are most interested in the distortion-rate function, 
where the parameter R=C(Γ); i.e. given the channel-cost capac-
ity, we are interested in codes which can reduce the distortion 
value D as close as possible to its limit. The main objective of 
this paper is to compare different coding schemes and their re-
spective distortion values Di in order to measure their efficien-
cies.

Prompt Processing Scheme: Subitizing
	
	 Prompt information processing is represented by the 
following setup: An information source S emits a sequence 
s1,..,si,…,sm, of  bits of information, which is compressed through 
a encoding function F onto a channel input sequence x1,…, xi,…
,xn of  bits of information, for i∈T and m>n . The m-bits se-
quence is the perceptual information consisting of size, color, 
texture, length, numerousness, and so on, and the n-bits chan-
nel input sequence consists of our internal representations about 
the outside world. The clause that m>n means exactly that the 
coding function is lossy compressing the environmental infor-
mation into the internal representation. The n-bits channel input 
sequence is processed through the channel p(y|x) generating an 
output sequence y1,…,yi,…,yn,, which is the semantic meaning 
invoked by the internal representation. The output sequence gen-
erated by the channel is decoded through decoding function G 
in a motor plan, ŝ1,…,ŝi,…,ŝk for k≤m (Figure 1). The pair (F, 
G)p is precisely our ordinary representations which ground our 
intuitive notion of reality. The channel has a cost limit Γ so that 
sequences x1,…,xi,…,xn have their length constrained – suppos-
ing that we’re just interested in cases of reliable transmission.
	
	 In order to measure the average of error of the code  
(F, G)p some psychological experimentation is needed. Some 
cognitive experiments assume the following general format: 
A perceptual sample is showed for a short period of time – of-
ten less than one second – and then it’s asked for the subject to 
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give the suitable motor answer for it – which is either voicing 
something or pushing a lever or executing more elaborate action 
plans. An example is the guessing experiments in which a given 
setup is quickly shown – e.g. a set of objects – and the individual 
has to guess the exact characteristics of the setup. Typically, the 
experiments’ results present inconsiderable error average rela-
tive to sparse sources of stimuli – whether numerosity, exten-
sion, or velocity. But, as the source information rate is increased 
above a given quantity, the average of error starts to increase 
almost-linearly along with the source information rate. Some-
times this average of error is also expressed in terms of the We-
ber’s Fraction, which is a constant describing of the slop of vari-
ance’s growth recta related to the increasing of the quantity of 
information1 – as the variance increases the error average does as 
well. The Weber’s Fraction, for numerical processing is around 
12%,10 for size-constancy processing it is around 4%, and for the 
object’s speed and trajectory processing it is between 5%-10%.11 
Still other perception’s modalities, such as color hues,12-17 show 
the same trade-off between the source information rate and error 
average. 

	 The trade-off between the source information rate and 
the average of error can be appreciated in the number process-
ing case. In the number guessing experiment, a setup containing 
a given number of entities is shown for a short period of time 
– often less than one second – and the subject has to guess the 
setup’s numerosity. The subject’s test performance gives rise to 
two numerical processing phenomena; subitize and estimation. 
In the former condition, one is able to subtly recognize the set’s 
numerosity up to around 3 or 4 elements while, in the latter con-
dition, only an estimation is possible.18,19,40 As the term “subitiz-
ing” suggests, it occurs when the individual subtly recognizes 
the set’s numerosity as rapid as 40-100ms/item, effortless, and 
very accurate – practically error-free. On the other hand, for 
setup’s numerosity greater than 4 only estimations with some 
degree of uncertainty are possible, which means that the average 
of error is bounded above zero. 	
 
	 Kaufman et al represented the subjects’ number guess-
ing performance through the trade-off between uncertainty and 
the source information rate (Graphic 1).18 The certainty axis is 
divided in 6 degrees, where 5 means complete certainty and 0 
means complete uncertainty. Notice, that at 4 or 5 objects, there 
is almost complete certainty while it brusquely decreases after 6 
objects. Graphic 1 shows clearly the almost linearly increasing 
of the average of error, after a given value, along with the source 
information rate increasing. Therefore, if few objects compose 
the setup, the visual representation achieves the right magni-
tude with high certainty; i.e. Di≈0. Otherwise, for large setup’s 
numerosity, the average of error is bounded above zero, Di>0. 
In summary, the code (F, G)p compresses the m-bits perceptual 
sequence in an n-bits channel input sequence, which consists 
of our internal representations about the outside world. As the 

1The guessing performance’s uncertainty can be conceptualized through differ-
ent notions; for example, either in terms of variance, or entropy, or simply as a 
conditional distribution

channel-cost capacity limits the number of bits reliably transmit-
ted, the perceptual sequence’s bits are lossy compressed in the 
channel input code words. The compression carried out by the 
code (F, G)p  is a kind of all-purpose one, for even in the situa-
tions in which only numerosity is interesting, color information, 
for example, cannot be stripped out from the representations. 
For this reason, the perceptual sequence’s bits interact with each 
other so that a setup with exceeding color information disrupts 
the number processing, for example.18 The uninteresting infor-
mation is called redundancy and the prompt processing scheme 
doesn’t seem to be a good code to handle specific situations. But 
why has nature endowed us with such a code? The reason seems 
to be that the (F, G)p code is a good code, on average, over many 
different situations. When the average distortion D is calculated 
for whole set U of Hamming-like distortion functions, di(S,Ŝ), 
the expected value |S|

2
i|S| 1

1E(U)= D
2 ∑∑  results in a tolerable value – i.e. it 

keeps the organism alive in most cases.

Working Memory Scheme: Biological Recoding
	
	 The main idea of the previous discussion was that the 
prompt coding scheme is a good one when handling a variety of 
situations, but it is not an optimal code when handling specific 
tasks – i.e. it is a good source-channel code averaging over all 
Hamming-like distortion measures di(S, Ŝ ), but it is a bad one 
for a subset of them. For specific situations, where just some 
specific bits are relevant, a different coding function would be 
better. 

	 This time I will examine how the working memory’s 
role in cognitive tasks fits into our previous theoretical model. 
The working memory is basically a memory system needed for 
executing complex motor tasks when the essential cues are not 
present in the environment at the time of the response.20 The 
system, in different ways, seems to help the performance of cog-
nitive tasks. I will interpret the working memory as an encoder 
which employs different codes (F, G)w according to different dis-
tortion measures di(S, Ŝ). 

	 The term ‘working memory’ refers to a brain system 
that provides temporary storage and manipulation of the infor-
mation necessary for such complex cognitive tasks as language 
compression, learning, problem solving, and action planning.21 

The working memory has two broad functional characteristics; 
maintenance and manipulation of information. According to the 

Graphic 1: Certainty versus numerousness.
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multicomponent model,22,23 the information maintenance is pu-
tatively carried out by three distinct systems; the phonological 
loop, the visuospatial sketchpad, and the episodic buffer. The 
first two are modal subsystems, respectively, for auditory and 
visual information, while the last is a multimodal integration 
subsystem. Still each maintenance system has two functional 
distinctions; the passive storage and active rehearsal of informa-
tion. The passive storage retains the information temporarily and 
it is subject to loss by decay or interference over time. The active 
rehearsal of information tries to simulate the retained informa-
tion so as to keep it in mind – e.g. rehearsal would correspond 
to the common strategy of sub vocally repeating the sequence 
of digits to oneself. The other broad functional characteristic, 
manipulation of information, corresponds to the central execu-
tive, which is responsible for recoding the information in a new 
format – such as when one sub vocally repeats some sequence 
of digits according to a specific format. Neurological evidence 
suggests that the anterior regions of the cortex – such as inferior 
frontal cortex (BA 44; Broca’s area) and premotor cortex (BA 
6) – are responsible for rehearsal and manipulation, while pos-
terior regions of the cortex are responsible for storage – such as 
inferior and superior parietal cortex (BA7/40) and right inferior 
parietal cortex (BA 40).24-28 
	
	 Even if the temporary storage and manipulation roles 
can help in cognitive tasks separately, we will focus on the cas-
es in which they seem to work together in order to recode the 
perceptual information.20,22,23,29 The preprocessed information is 
retained in one of the storage systems and then it is recoded by 
the manipulation system. For example, for the case in which one 
is interested in the setup’s numerosity, the subject can recode 
the setup’s numerosity in terms of “chunks” so as to surmount 
the prompt processing limit.30-34 Therefore, if the processing of 
numerousness was limited to around 3 or 4 objects (subitizing), 
then by using working memory one is able to increase this num-
ber to around 7, with very low average of error (Graphic 2) – 
without counting! The encoder’s role is viewed as an endeavor to 
deploy different source-channel codes (F, G)w in order to reduce 
distortion value Di according to every specific  i – remember that 
the index i is given by typical sequence (situation) occurring. 
The new mental representation (channel input) generated by the 
working memory is very poor concerning color, size or texture 
information, but it is much more informative about numerical 
information – it is a better code for handling redundancy.

	 If it is plausible to interpret the working memory as 
an encoder, then the information kept in it should be of a pre-
processed kind. Neuropsychological evidence offers support for 
the independence between the working memory’s information 
and the semantic content currently retrieved through it. Among 
this evidence is the fact that similarities in semantic content cur-
rently retrieved through a set of stimuli are irrelevant for the acu-
ity with which these stimuli are kept in working memory.  For 
example, if one were given a list of words, such as “map” “tap” 
“lap” “flat” and so on, it would be difficult to remember all those 
words because the stimuli displays similar pattern.  On the other 
hand, if one were given a list of words, such as “house” “home” 
“abode” “apartment” someone would not have as much of a 
problem remembering even if the semantic content is about the 
same. This is because working memory functions at a prepro-
cessed level not taking into consideration the semantic content.35 
Still, the concurrent modal information tends to disrupt different 
modal information kept in working memory. There is a reduc-
tion in recalling lists of visually presented items brought about 
by the presence of irrelevant spoken material. The spoken mate-
rial’s semantic content is completely irrelevant, with unfamiliar 
languages or noisy sounds being just as disruptive as meaningful 
words in one’s own language. These results are interpreted under 
the assumption that disruptive spoken material gains obligatory 
access to working memory.36
	
	 Even if the working memory allows the brain to sur-
mount its limits of prompt processing, it doesn’t get far enough. 
This system appears to be strikingly limited in capacity, and can 
only store a small amount of information for short periods of 
time – it’s around three items for not more than three seconds-
-in the number processing case.30-34 On the other hand, working 
memory’s representation is still structured with the same prompt 
processing code’s properties – i.e. even if it privileges some kind 
of information, say numerosity, it cannot preclude the other kind 
of information, such as colors, forms, and so on. For example, 
if a dense colorful setup is presented, it causes the numerical 
capacity of visuospatial sketchpad, which is generally estimated 
to be about 4 items, to decrease.30,34 These results generalize the 
working memory’s limits for the setup’s complexity, rather than 
for just the number of objects.35

The Cultural Strategy: The Employment of Symbols

	 The working memory, as previously mentioned, is an 
encoding system which stores information and recodes it. The 
problem with this system is that it is severely limited in storage 
capacity. Additionally, the working memory code is too costly 
for optimally handling large amounts of information; its over-
load causes severe disruption to many cognitive tasks. A new and 
less costly format is the channel code (F, G)S,2 which represents 
symbolic language as another coding scheme. The symbolic lan-
guage coding scheme has at least two advantages in comparison 
with the internal representation schemes. First, it is a cheaper 
and more efficient channel code than the internal representation 

2A similar interpretation, in terms of two mental calculation systems, has been 
offered by Dehaene.37

Graphic 2: Certainty versus numerousness by using working memory.
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schemes and, second, it liberates the working memory to help in 
learning, problem solving, and planning tasks. By using a more 
efficient code, much more information can be reliably transmit-
ted, which ends up improving drastically the system’s control 
upon the environment.

Efficiency and cost: The three-object prompt processing limit 
can be interpreted as the channel-cost capacity. An efficient 
channel code should achieve the smaller error rate by compress-
ing the source information in code words that don’t exceed the 
complexity expressed by that setup. To compare two codes’ ef-
ficiency one should pay attention to its average of error on the 
cognitive tasks. By comparing the internal representation codes’ 
performance with the symbolic performance in numerical tasks, 
one can see the huge difference in efficiency (Graphic 3).

	
	 The graphic is, to some extent, speculative because 
mathematical skills based on symbolic language mastery vary 
according to cultural factors such as training, educational system 
efficiency, and so on. At least two groups of evidence support 
the interpretation of the symbolic language as a channel coding 
scheme; (i) the symbolic language deficit increases the error rate 
in retrieving the right numerical magnitude; and (ii) the sym-
bolic systems’ evolution proceeds seems to be constrained by 
brain processing cost-capacity.  

(i) The symbolic language deficit increases the error rate in re-
trieving the right numerical magnitude. There is a correlation 
between the bloom of the mathematical skills and mathematical 
language competence. The burst of conceptual and interactive 
mathematical skills with which to handle quantities beyond the 
subitizing’s and working memory’s numerical capacity is con-
comitant with the numerical language acquisition. The ability to 
count and handle larger numerosities rises in children around   13

2  
years old just when numerical linguistic devices start being mas-
tered. On the other hand, evidence from Amazonian Indigene 
groups have supported the thesis that language is a condition of 
possibility for exact representation of numerosities beyond subi-
tizing quantities. The group’s individuals, whose language miss-
es linguistic devices for quantities larger than 3-or-4 objects, 
have shown only an ability to estimate over larger quantities. 
Neuropsychologists have found that disorders in number repre-
sentation frequently are accompanied by disorders in language. 
Patients with brain damage in areas typically associated with 

language faculties have shown a severe impairment with exact 
numerical processing of larger quantities. These same patients, 
however, still keep their capacity to exactly represent quantities 
up to three objects and to estimate over larger quantities.37

(ii) The symbolic systems’ evolution proceeds seem to be con-
strained by brain processing cost-capacity. As human interac-
tion routines require the processing of larger quantities, it in-
creases the demand for channel code bits. Different numerical 
notional systems have different costs, which eventually obligate 
us to change from one numerical notational system to another 
according to the increase of the demand. The complexity ex-
pressed by the around-three-objects representation can be in-
terpreted as standing for the channel-cost capacity limit, which 
doesn’t mean that this limit is the around-three-objects numeros-
ity, as it contains figurative information as well. 
 
	 Probably, the first numerical notational system used 
consisted of bundles of sticks paired one-to-one with the setup’s 
objects (Figure 2). It was the least efficient numerical notation, 
because its only advantage was that of keeping the informational 
content out of the ever changing environment, which saves short 
or long-term memory demand. However, as the number of sticks 
increases along with the set of objects’ numerosity the bundle-
of-sticks coding scheme meets the same subitizing’s and work-
ing memory’s limits. Therefore, the bundle-of-sticks numerical 
system is a costly channel code to process quantities larger than 
fifteen or twenty objects. Looking at the code’s redundancy is 
another way to assess the code’s efficiency. Notice that every 
stick can be permutated without changing the code’s informa-
tion, which means that the code uses much more bits than neces-
sary to encode a given amount of information. 

	

	 The second, the naming-summation numerical system 
is a channel code category under which, for example, are the 
Egyptian and Roman number systems, characterized by the em-
ployment of naming quantities and summation strategies. The 
notational marks are for numerical magnitudes and their rep-
etition means their summation.38 The marks retrieve numerical 
facts stored in long-term memory whose meaning is provided 

Graphic 3: Certainty versus numerousness by using symbolic language.
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Figure 2: Bunch-of-sticks number system.
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by inborn numerical skills or constructed by combining them.  
For example, the Egyptian inscription of the number 543 is 
HHHHHTTTTUUU, where the symbols H, T, and U denote 
the powers 100, 10, and 1, respectively. Through the use of the 
naming-summation numerical system the numerical information 
can be compressed in shorter code words than those provided 
by the bundle-of-sticks system (which is coextensive with the 
subitizing’s and working memory’s limits) – the Roman numeri-
cal system, which uses subtraction notations as well, produces 
even shorter compressions. However, as the permutation test in-
dicates, the representation provided by the naming-summation 
numerical systems still contains too much redundancy; e.g. the 
code words HHHHHTTTTUUU and HHUHUHTTUHTT ex-
press the same numerical quantity. Even though the naming-
summation numerical system permits us to process exact quanti-
ties in the hundred’s magnitude, it becomes too costly to process 
numerosities around the thousand’s magnitude, meeting the 
subitizing’s and working memory’s limits.
	
	 The third example is the multiplicative numerical 
system - e.g. Chinese number system.38 The multiplicative nu-
merical system is also based on underlying additive and naming 
principles, but a supplementary multiplicative principle allows 
for suppression of the cumbersome repetitions of the symbols 
belonging to the same rank.  Different symbols for each uni-
ty (u1,u2,…,u3)  are introduced. The Chinese 543 is therefore 
written in the form, u5Hu4Tu3. Although the multiplicative 
system uses five different symbols instead of three needed in 
hieroglyphic Egyptian, it makes it possible to compress the nu-
merical information in shorter code words. However, as some 
permutation is still permitted – u5Hu4Tu3 means the same as – 
u4Tu5Hu3 the representation provided by this category of nota-
tion contains redundancy.    
	
	 The last numerical system is the positional numerical 
system – the Arabic Number System.38 This system was devel-
oped some time in the first half of the sixth century A.D. in India, 
from whence it spread more or less rapidly to the whole world 
through the Arabic people. The system uses only 10 symbols, 
the same former system’s operations, and the rank of the units 
abstractly symbolized by the position occupied by these units 
in the code word. The Arabic numerical system encodes quanti-
ties in the usual way, as we know it,  and produces very short 
compressions of huge quantities – e.g. 1080 , which is approxi-
mately the number of atoms in the entire observable universe. 
It also provides us with powerful algorithms by which different 
quantities and relations are compressed in shorter code words – 
equations. These algorithms can be viewed as a whole class of 
encoding functions producing the shortest code words possible. 
As easily noticed, permutation among the symbols are not per-
mitted without changing the encoded information.
	
	 Although the above discussion has been restricted to 
the processing of quantities, the same interpretation can be ap-
plied to different dimensions of perceptual information process-
ing. Therefore different areas of applied mathematics are con-

nected with different cognitive processing limits; e.g. geometry 
and size-constancy processing, differential calculus and object’s 
speed and trajectory processing, and so on. The interpretation 
also seems to give an explanation to the intuition “simple the-
ories are the best theories”, for the simple theories’ costs are 
smaller, which decreases the probability of error. It’s by no mere 
chance that much of the mathematician’s work consists of, by 
exploring the isomorphism among different structures, finding 
simpler ways in which to solve a problem. However, it doesn’t 
always mean that complex theories can be compacted into simple 
(low cost) representation. In fact, according to the source cod-
ing theorem, the lower bound compression is the R(D), which is 
R(0)=H(X). Therefore, as long as one looks for less lossy repre-
sentations, the code words’ cost inevitably is to increase.

Representations Stand for What?

	 The representational interpretation of the internal expe-
rience and the symbolic language’s role has dominated the oc-
cidental thought at least since Plato. The general idea of this line 
of thought seems to be grasped through the Varela et al. words:

“[…] that the world is pre-given, that its features can be 
specified prior to any cognitive activity. Then to explain 
the relation between this cognitive activity and a pre-given 
world, we hypothesize the existence of mental representa-
tions inside the cognitive system (whether these be images, 
symbols, or sub-symbolic patterns of activity distributed 
across a network does not matter for the moment).”39

	 In the representational interpretation, the particularities 
of a given representation – such as colors, extension, or commu-
tativity – stand for real properties from the outside world and it 
is the relation of correspondence or adequacy, with its reference 
to the outside world that makes one representation better than 
another.3 On the other hand, in the channel code interpretation 
of the representation’s role, a code’s intrinsic characteristics, for 
example, encoding light as colors or as wave lengths, has noth-
ing to do with source information, all that matters is the source’s 
and code’s complexity. As we have seen, these particular coding 
aspects have rather a lot to do with channel and its cost, and 
not with the source itself. Speculatively, if the brain-cost capac-
ity were greater (or infinity) than that suggested by cognitive 
experiments, the employment of symbolic language would be 
unnecessary.   

	 What does it mean to say source and code complex-
ity? The intuitive way to understand this complexity is in terms 
of the degrees of freedom of the system’s behavior or the de-
grees of freedom through which a system can affect another one. 
Mathematically, any system can be conceptualized as a set of 
variables and its degrees of freedom as a distribution of prob-
ability. If so, the Shannon Entropy, which is a function of the 
distribution of probability, emerges as a suitable measure of 
3It is worth noting that in the representational interpretation, the belief that 
simple theories are better has, in principal, no clear explanation.
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complexity in terms of the minimum bits necessary to describe 
unequivocally the system behavior.4; 8,40,41 More importantly, the 
main purpose of a code is to convey the source’s complexity as 
reliably as possible. However, very different codes can display 
the same complexity and their intrinsic characteristics will de-
pend exclusively on the channel’s nature. But how can we evalu-
ate the code’s performance? This is a very important question. 

	 To evaluate the code’s performance, one has to measure 
the distance between the source information and the processing 
information, which is properly the source representation. This 
distance is measured according to a distortion measure whose 
definition depends on the system’s purpose. As we have said be-
fore, as the CNS is understood as a control system, the distortion 
measure has to be one that grasps this controlling dimension. 
In our model, the distortion measure is a Hamming-like distor-

tion that we call Accident Function, 
ii

i
i

0	if	s=s	e	s	 	S 	 	s s	e	s	 	S
d (S,	S)=

1	if	s 	 	s 	S

ou

s e

 ∈ ≠ ∉ 
 
 ≠ ∈ 

 


 . 
The accident function interprets, as an error, the decoding which 
results in accident. Therefore, the symbol “=” does not repre-
sent “equals” or “equivalent” but represents successful action 
– the symbol “≠”  is for unsuccessful action. Therefore, if two 
coding schemes result in the same source representation (action 
plans), they will be equivalent for communication purposes. 
The perspective seems to be in agreement with one of the older 
philosophical insights; that we cannot compare the reality with 
subjective or symbolic representation. However, all the time, we 
compare and test the motor plans and empirical experiments re-
sulting from these coding schemes. When a given code directs us 
to a successful motor plan, we say that “it represents the reality”. 
Putting these two ideas together we get to the following state-
ment: Our epistemology (coding schemes) can be diverse, but 
our ontology (successful interaction) is unique.

CONCLUSION

	 I have been discussing, broadly, different paths taken 
by an organism to better perform cognitive tasks. In this in-
terpretation, these “paths” are understood as different coding 
schemes through which information is processed by the Cen-
tral Nervous System. Two main aspects concerning the coding 
schemes’ performance were pointed out.  These are the coding 
scheme’s cost and its ability to handle with redundancy. We dis-
tinguished among three coding schemes to which the organism 
resorts: the prompt processing, working memory, and the sym-
bolic coding scheme. The prompt processing scheme seems to 
be the better code on average; however, a bad one for specific 
tasks. The working memory coding scheme seems to be better 
than the former one, but still too costly to perform specific tasks 
optimally. The symbolic scheme seems to be the cheapest and 
the more dynamic one for handling redundant information. The 
coding scheme metaphor serves to explain the old philosophical 
insight that simple theories are better theories and to mark a divi-
sion between the epistemological domains as diverse versus the 
4Shannon Entropy is not the only measure of complexity. The Kolmogorov-
Chaitin complexity is also a measure of complexity and both measures are math-
ematically related.3,16,29

ontological domain as unique. 
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